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The role of a spatially varying absorptive inhomogeneity located at different depths within a turbid material
has been investigated. This inhomogeneity has been characterized by a spatially dependent Gaussian distribu-
tion of its absorption coefficient. The present study has been performed calculating the time-resolved contrast
function in the framework of the first-order perturbative approach to the diffusion equation for a slab geometry
and a coaxial measurement scheme. The model has allowed us to take into account different locations of the
inclusion along the source-detector axis. The accuracy of time-resolved contrast predictions has been analyzed
through comparisons with results of the finite element method that has been used to numerically solve the
diffusion equation. Recovery of the absorption perturbation parameter of the inhomogeneity for different axial
positions has also been investigated.
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I. INTRODUCTION geometry[12—15. This approach is currently employed in
clinical applications for breast tumor detection and it relies
Optical imaging of objects hidden inside highly scatteringon the basis of recovering the different optical properties of
media is a growing research activity in the biomedical appli-normal and pathological tissues from analytical expressions
cations area. Safe and noninvasive imaging modalities witlthat fit transmittance measurements.
diagnostic ability can be developed using near infrared light Analytical expressions for the time-resolved transmittance
in the framework of diffusion approximatiofi]. The func- and reflectance have been obtainéé—1§ for simple ge-
tional imaging of the brain and the detection of breast tumoremetries such as an infinitely extended homogeneous scatter-
are the current aims of optical imagifg,3]. Such applica- ing slab of a given thickness. Since the slab can be consid-
tions are intensely pursued using time-domain, frequencyered a good model for biomedical applications such as a
domain, and continuous wave methods to measure the transempressed breast, solutions of the time-dependent diffusion
mission light between points on the sample surfpte]. equation for this simple geometry are of valuable practical
So far, two general approaches have been considered for inmterest[19,20, inasmuch as the diffusion equation-based
aging: optical tomography and two-dimensional image pro-model is adequate for describing photon migration in opti-
jection. Optical tomography-based techniques aim at geneegally thick tissues. However, analytical solutions that account
ating a three-dimensiondBD) map of the absorption and for the effect of an inclusion on the light propagation in an
scattering coefficients within the turbid medium under inves-otherwise homogeneous turbid medium cannot be obtained
tigation by using more or less complex source-detector medn general. Consequently, perturbation-based schemes that
surement schemes and 3D inversion algoritfi#8,8. Gen-  give results as accurate as possible are adopted. In this re-
erally, these inversion procedures are computationallgard, first-order perturbation expressions for the diffuse re-
expensive to handle a large amount of data, and novel linedlectance and transmittance have been obtained in the case of
perturbation approaches have been recently proposed & small inclusion with spatially uniform optical properties
greatly reduce the computation tini@—11. On the other that slightly differ from those of the host mediufh5,21—
hand, projection techniques provide two-dimensional imageg4]. Small inclusion means neglecting the change of fluence
by a coaxial scanning of the sample slightly compressed berate in the region of the inhomogeneity at first-order approxi-
tween parallel planes with a source-detector pair in a tandemmation. Models have been tested on tissue phantoms recov-
ering absolute optical properties of the inclusions. Obviously,
the reconstructed values are more accurate when the pertur-
*Electronic address: rosesp@na.infn.it bation is small, which is not always the case in real life
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FIG. 1. Geometric scheme assumed for the perturbation model. A Gaussian absorptive inclusion of cylindrical shape geometry with
radiusR and heighth is centered at=z, inside a turbid slab of thickness A pulsed light beam illuminates the front surface of the
scattering slab at plare=0. The photons are assumed to be initially isotropically scattered at a diepiiiu.. below the front surface. The
time-resolved transmittance is measured by a detector at pladecoaxial with the source and with the inclusion.

applications. In order to extend the range of validity to largeraxial location of the Gaussian absorptive inclusion. The rela-

volumes an empirical correction to the diffusion perturbationtive error of the absorption perturbation parameter recovered

models has been proposed in R&b. by a fitting procedure will be calculated and discussed for
Recently, we have developd@6] a perturbation model different locations and for different sizes of the inclusion.

that accounts for the effect of spatially varying optical pa-

rameters of an inclusion on the time-resolved transmittance. Il. THEORY

We have analyzed the case of a Gaussian absorptive inclu- _ ) o

sion located at the central plane of a scattering slab in coaxial The basic geometric scheme of an infinitely homogeneous

detection. The time-resolved contrast function computed bxtended slab is shown in Fig. 1. The perturbation model

the perturbation model has been compared with one of th@Ssumes a Gaussian absorptive inclusion of cylindrical shape

finite element methodFEM) simulations that have been 9eometry with radiuR and heighth being located at axial

used to numerically solve the diffusion equation in the presPositionz=z,. inside the scattering slab of thicknessThe

ence of the spatially varying Gaussian absorptive inclusionSPatial dependent absorption coefficient is assumed to be

The analysis has showed that the change in transilluminatio#@rying along the radial distangg, according to the Gauss-

signals resulting from the presence of the absorptive inclui@n law

sion depends critically on the size of the inhomogeneity.

However, some important points were unresolved, such as 5,U«a(fp)=A,U«anl{ —2In2

the effectiveness of the developed perturbation approach to

determine the optical characteristics of an inclusion embed- ) ) . )

ded at different depths in the slab and its ability to provideWhereAua is the value of the Gaussian absorptive inclusion

the correct temporal profile of the contrast function for dif- ©n the cylinder axis and corresponds to the maximum devia-

ferent longitudinal positions of the inhomogeneity. tion of the absorpuop coeff|C|en.t from the gnperturbed yalqe
It is the purpose of the present study to address the abovéta Of the host medium. The size of the inhomogeneity is

mentioned points comparing model predictions with remdetermined by its radiuR and it is defined as the radial

simulations for an absorptive inclusion located at differentdistance at which the value of the absorption coefficient of

depths in the scattering medium. The plan of the paper is thihe inclusion decreases fou.q/4. _

following. In Sec. Il we will review and summarize the basic "€ perturbed time-resolved transmittantge (t;zpc)

results of the first-order perturbation model to determine th&an be written a$26]

change in the time-resolved transmittance resulting from the

@2

, @

presence of a Gaussian absorptive inclusion in the coaxial Toerd(5;Zpd) =T(1) + 6T, (£,Z50), 2
detection scheme. The model is derived for a refractive index here

mismatch between the scattering slab and the surroundin

medium through the use of the extrapolated boundary condi- expl — o) w 222Dt

tions. In Sec. Il we will present the perturbation model T(t)=¢ 2 LT

based results of the time-resolved contrast and we will inves- 4mA(N)Ddet =1 d?

tigate its changes with the axial location of the inclusion. A

case of practical interest, which is representative of a slightly % sin mm(zs+Z,) sin( mm(d+2,) 3)
compressed breast, will be considered to discuss numerical de de

results[12,25. FEM calculations will be used to validate the

perturbation approach through numerical simulations of thélescribes the basic solution of the homogeneous slab prob-
absorptive inclusion at different depths. In Sec. IV we will lem for an isotropic source located at a deptk 1/u¢ and
show a detailed quantitative investigation of the accuracy oemitting a pulse of unit energy at tinte=0. In Eq.(3) D

the perturbation model based results as a function of the=1/3u is the diffusion coefficientu is the reduced scat-
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tering coefficient of the host medium(n) is a factor that
takes into account the refractive index mismatchetween
the scattering slab and the surrounding medium,
=2A(n)D is the extrapolated distance, adg=d+2z,.

In the framework of the first-order approximation to the
diffusion equation we developed in R¢R6] an analytical
expression for the chang@'l'ﬂa(t;zpc) in the time-resolved

transmittance when a spatially varying Gaussian distributed

absorptive inclusioril) is considered, namely,

Apa
2A(n) m2D2d3t

X ex;{—,uavt—
k=1

XRk,I(th)Zk,I(ZpCah),

0T, (6Zpd) = —

m?Dut(k?+1?)
2d2
4

whereR, |(R,t) is a function of the radiuR of the inclusion
and it is given by

R2e~ k18

Rk,l(Rat):W

{[Ei(a,(B+1))~Ei(ay (8- 1))]

+ eI Ei(— ay,(B+1))
—Ei(— o (B— 1)1}, ©)
with

_ wDot(k?~1?)

a1 = ng

R2
B=N1* 350tz

and the exponential integral K is given by

: (6)

()

where the principal value of the integral is taken.
The functionZ |(z,¢,h) is given by
sir{

de "ir{
2m(k2—12)"
m(kK=1)(z.+2)

(k+|)Sir{ a.

_(k_l)sir{rr(k+I;(ze+z)

z2=2Zpct+hi2
z:zpcfh/Z
ues of the functionZ,, betweenz=z,.+h/2 andz=z,.
—h/2. 1t can be shown thaR, (R,t) and 2, (z,¢,h) re-
duce fork=1 to the following forms:

lr(d+2z)
de

km(zs+2z)

Zk,|(ZpC1h): d
e

X

z=2zpc+hi2

®)

e z=2,.—h/2

The notation|- - | means the difference of the val-
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. szl B+1 9
R ,t)—mn 5=1)" 9
h
h . 2wk Ze+ZpC+E
Zk’k(ZpC,h)ZE"-m Sin de
h
_ 2k ze+zpc—§
—sin (10)

de

The dependence of the time-resolved transmittance on the
longitudinal positionz,, of the inclusion has been explicitly
introduced in the above equations because in the following
section we will extensively discuss the time-resolved con-
trast as a function of the depth of the inclusion.

IIl. TEMPORAL EVOLUTION OF THE CONTRAST

The accuracy of the perturbed transmittagg (t;z,)
is investigated through comparisons with numerical solutions
Thum(t;Z,) obtained by solving the diffusion equation for
the fluence rateb,,,(r,t) in the presence of the Gaussian
absorptive inhomogeneity, namely,

sz—li— +4 P —rg,t
v ot [tat Spa(r) ]| Ppyn(r —rs,t)

== 4o o=,

(11)

whererg=(0,0,1/x¢) is the location of the source &0.

To solve numerically the diffusion equati¢hl) under the
extrapolated boundary conditions we have employed the
FEM since it has been shown to be a robust and efficient
numerical method for solving the diffusion equation in the
case of complex geometries and inhomogeneous njadia
29]. The numerical results refer to a diffusing slab of thick-
nessd=40 mm, with the inhomogeneity located at different
depthz,. along the probe beam-detectoaxis.

To develop a close comparison between the first-order
perturbation model predictions and the FEM simulations, we
have shown in Fig. 2 the temporal dependence of the contrast
functions 6T er(t;2,)/T(t) and STyt Zp)/T(t) for
three valuesz,. of the location of the inhomogeneity;
namely, z,.=1/4 d, halfway between the front surface and
the central plane of the slai,.=1/2d, at the midplane, and
Z,.=3/4d, halfway between the central plane and the detec-
tor position.

The contrast functions are given by

5Tpert(t;zpc) _ Tpert(t; ch) - T(t)
HO T(1) ’

(123

5Tnum(t;zpc) . Tnum(t;zpc)_T(t)
O T(1)

(12b)
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FIG. 2. Temporal behavior of the contrast function®l e, (t;zp)/T(t) and 8T, m(t;Zp0)/T(t) computed at depthz,.
=1/4d,1/2d,3/4d of the inclusion for values of the relative absorptive perturbatiqty, / ., ranging from—40% to 40%. Row panels are
obtained for the same value of the radR®f the inclusion, namelyR=2.5 mm andR=5 mm. Results refer to a turbid slab of thickness
d=40 mm, relative refractive index= 1.4, absorption coefficient,=0.004 mm!, and reduced scattering coefficigm{=1.0 mm *.

According to Eq.(128, 6Tpen(t;zy)/T(t) is the relative  trast is essentially governed by the factofexp
change of the perturbed transrmttant_:e in t.he_ considered C‘P'—floAMa(f)dl]—l) that decreases for photons detected at
axial probe beam-detector configuration. Similarly, B®b  shorter times of flight, i.e., for photons that follow a trajec-

defines the relative change of the transmitted signal obtainegry close to the source-detector line. It is also clear from the
by the FEM simulation of the Gaussian absorptive inclusion.

The temporal behavior of the contrast functighga and 0.050
(12b) is shown in Fig. 2 for two values of the inclusion
radius,R=2.5 mm andR=5 mm. In each case, the thick- 0.045 - }d =40 mm
nessh of the cylindrical inclusion has been set equal to the
diameter R [23,15,28. The reduced scattering and the ab-
sorption coefficients of the unperturbed medium have been 0040
fixed tou.=1.0 mni ! andu,=0.004 mnTl, respectively,
and the mismatch in the refractive index has been set to the 0.035 1 }d=50mm
value 1.4. The considered values are of practical interest be-
cause they are representative of breast tis§li225. In- - 00304
spection of the curves shows that the contrast function in- ~e
creases as the center of the Gaussian inclusion is displaced .; 0,026 }d =60 mm
from the central plane to the positiozg.=1/4 d and z,. T
=3/4 d that are symmetric with respect to the central plane.
The perturbation model predictiord e (t;2,)/T(t) are in 0.020 -
excellent agreement with the FEM simulations 1 }d = 80 mm
OThum(t;Zpe)/ T(t) for R=2.5 mm as the relative absorptive 0.015 L
perturbationA w,/n, ranges from—40% to 40%. Indeed,
the temporal behavior of the numerically and perturbatively
computed contrasts are almost indistinguishable in the con- 00101
sideredAu,/u, range. The perturbation model generally ————————————

— 1 1 1 1 1 1
. . 0 1000 2000 3000 4000 5000 6000 7000
underestimates the contrast compared to the FEM simula-

tion, and the discrepancies remains withir5% until the time (ps)

radius of the inhom_ogeneitRsS mm. The decrease of thg FIG. 3. The numerical contrastT,u(t;zpd)/T(t) at depths
contrast at earlier times can be easily understood by taking, —1/4d andz,.=3/4d for increasing values of the thicknessf
intoaccount the statistical weight factor €xp/olia  the scattering slab. An absorptive inclusion with radRis5 mm
+Auy(r)]dl) that describes the probability of survival of a and negative valud u,/u, .= — 0.4 of the relative absorptive per-
photon following a trajectory of lengthinside the region of turbation have been considered. The other parameters are the same
the absorptive inclusion. The temporal behavior of the conas Fig. 2.
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FIG. 4. Average contragiiTe(t;2,0)/T(t)) and( 8T, ,nt;2p0)/T(1)) as function of the depth,, of the inclusion for two values of the
radiusR when the absorptive perturbatidyw,/w, ranges from—40% to 40%. The four panels are obtained for a scattering slab with
thicknessd=40 mm, absorption coefficient,=0.004 mm ¢, reduced scattering coefficient =1.0 mm 2, and refractive index mismatch
n=14.

numerical results that the absolute values of the contrast IV. SPACE-DOMAIN OPTICAL CHARACTERIZATION
computed for negative values dfu,/u, are higher than OF THE GAUSSIAN ABSORPTIVE INCLUSION
those computed for the positive values. Indeed, the quantity AND ACCURACY OF THE MODEL
(exr[—f'oA,ua(r)dl] —1) contributes more in the former case, )
which causes the evident asymmetry in the temporal behay- 10 develop a closer analysis of the contrast dependence

ior of the contrast between positive and negative values of” the depthzye of the Gaussian absorptive inclusion we
the relative absorptive perturbati I have considered the temporal averagé$ye (t;z,0)/T(1))
m!!‘!‘a a-*

and( T h,m(t;Z,c)/T(t)) of the contrast functions in the time
It should be noted that the values of the contrast calCUjnerya| of Fig. 2. Figure 4 shows the average contrast as a

lated when the center of the inhomogeneity iszgi=1/4d  fynction of the axial location of the inhomogeneity for the
are higher than those computed with the inhomogeneity I0same optical and geometrical parameters of Fig. 2. The per-
cated atz,.=3/4d. This is just a consequence of the asym-turbation model based results are in remarkable agreement
metry between source and detector locations in the considwvith the FEM simulations. The minimurtabsoluté value of
ered setup. In the first case the source-inclusion distance tbe average contrast is achieved when the center of the in-
shorter by one scattering lengthul/ than the distance oc- clusion is placed at the midplane of the scattering slab, both

curring between the inclusion and the detector in the seconff" tposititye n:nd /negaéive values |°f thef ;ﬁlaﬂ\.’;@ abzor?tive
case. To deepen this point, let us consider the FEM simuld2MtUroationi tal s . FOr given values of the Size and o

tions shown in Fig. 3. The contrasiy,(t;zpc)/T(t) has he relative absorption perturbation parameter, the average

b dfor . | t the thick h contrast tends to increase as the center of the inclusion
een computed for increasing values of the thickmsskthe moves closer to either one of the surfaces of the slab. For

scattering slab with the same scattering and absorption Coeé'xample, if we consider a radil®=5 mm of the inclusion
fl_c:lents as given fqr Fig. 2. AradiuR=5 mm of the mc_lu- and take|A uu,/ 1, = 40% the absolute value of the average
sion and a negative valugu,/u,=—0.4 of the relative  contrast increases from 3% up to 4.5% in the considered
absorptive perturbation have been assumed. As we increaggial range. By comparing the numerical results reported in
the thickness of the slab frooh=40 mm tod=80 mm, the  Fig. 4 it can be clearly seen that the contrast tends to increase
difference between the contrasts ag.=1/4d and z,.  with increasing the radiuR of the inhomogeneity and, simi-
=3/4d gradually reduces until the two temporal profile |arly, with increasing the degree of the relative absorption
curves become almost indistinguishable, as can be seen érturbation|Au,/u,|. In fact, higher values oR and
looking at the profiles computed for the thicknesls |Au,/u,| affect photon migration more significantly, which
=80 mm. Indeed, the asymmetry due to the location of theenhances the difference between the perturbed transmitted
source atz=1/ugs becomes negligible with increasing the signal and the unperturbed one. Since the accuracy of the
slab thickness, which makes the two contrast profiles similaperturbation model is expected to decrease in this condition,
as the system was truly symmetric. it is important to investigate the fitting procedure ability of
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FIG. 5. Numerical calculation of the relative erref, asa function of the depth of the Gaussian absorptive inclusion. The four panels

are obtained for a scattering slab with thicknelss40 mm, absorption coefficient,=0.004 mnT!, reduced scattering coefficiept,
=1.0 mn %, and refractive index mismata=1.4.

recovering the optical properties of the inclusion. For thisfor Au,/u,= —0.4. On the contrary, minimum values of the
purpose, the analytical model of the perturbed time-resolvegelative error are|e, Ma|20.6% and are attained foR
transmittance, as expressed by E@®. and (4), has been _5 5 mm andA . /1, =0.2.

implemented in a least squares fitting procedure. This per- i hoteworthy that the relative error does not apprecia-

r_mtted Tper(t:Zyo) 10 be fitted to a FEM simulation of the bly change as we consider different axial positions of the

time-resolved transmittance for a slab containing the Ga“s%enter of the inhomogeneity although the contrast changes

i‘."‘r.' absorptive inclusion located at differe_nt depths. Ir_1 thesignificantly in the considered spatial range as can be seen
fitting procedure[30,31, only the absorptive perturbation from the results shown in Fig. 4

parameterA u, has been allowed to vary. The fitted values
Auq5ir have been determined for different choices of the
sizeR and of the axial location of the inclusion.

The accuracy of the perturbation model has been investi- V. CONCLUSIONS

gated by calculating the relative erreg,, defined as To summarize, we have performed a detailed investiga-
tion of the contrast function obtained from a first-order per-

Apg—Apg it turbation approach to the diffusion equation in the case of an

€Ap,~ A—Ma (13 absorptive inclusion characterized by spatially dependent

Gaussian distribution of its absorption coefficient and located
Equation (13) expresses the deviation of the fitted value &t different depths inside the spattering medium. We consid-
A, i Of the Gaussian absorptive inclusion from the ex-€red a slab geometry, a coaxial measurement arrangement,
pectéd oneA 1, through the capability of the fitting proce- and a refractive |r_1dex mls_match betwe_zen the scattering slab
dure of minimizing the discrepancies betweBg(t;zpo) ﬁnd the sprroundmg medium. The optical parameter; of the
andTpum(t:Zpo). The relative errok,,,_as a function of the host medium were chosen so as to be representative of a

. . . a - slightly compressed breast. This model is expected to be
axial Iocatlpnzpc of the mhomogeneny IS shovyn N FIg. 5. 1ore effective in realistic cases of imaging reconstruction of
The numerlcal result§ have bgen obtained for increasing SI%ﬂhomogeneities whose optical properties change gradually
of the inhomogeneity, ranging fronMR=2.5mm 1 Ry the region of the inclusion to the surrounding medium.
=10 mm, and fofAua/pa|=0.2 and|Apa/pa| =04. The  rarefore the considered model has a particular significance

absorption coefficient and the reduced scaEtlering coef,ficier]h those applications that require the detection of absorptive
of the host medium arew,=0.004 mm- and u

- ’ s inclusions such as the case of many kinds of tumors in the
=1.0 mn . To point out the comparison among different near infrared regiofid2].

values of the relative error the samecale has been adopted  \\e have shown the time-resolved contrast increases as
for each choice oR and|A u,/ua|. As expected, the general the inclusion moves closer to either one of the surface of the
behavior emerging from the results is that the relative errogjap. The minimum value attaints with the inclusion located
€, increases with increasing and|Aua/ua|. The worst 4t the midplane. The difference among contrast values com-

case corresponds to the siRe=10 mm with |5Aua|:18% puted for inclusions located symmetrically with respect to
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the midplane of the slab is due to the asymmetry between thieehavior at first-order perturbation approach might be ac-
location of the source and the detector. This difference reeounted for a simple heuristic formula estimating the change
duces with increasing the thickness of the slab. of the relative error with the size and location of the inclu-
Perturbation model results have been analyzed througsion and with the degree of the relative perturbation. Such a
comparisons with numerical FEM solutions of the time- heuristic formula would be a useful figure of merit when
dependent diffusion equation. A least squares fitting procedesigning optical imaging systems, and it demands further
dure has been developed to recover the absorption perturbavestigation in order to explore the influence of the optical
tion parameter for different axial positions of the Gaussiarproperties of the host medium. It is worth pointing out that
absorptive inclusion. The numerical results have shown thahe developed perturbation modek] and the numerical re-
the accuracy of the perturbation model is better than 20% fosults presented so far suggest using this approach as a basic
|Apal s <40% when the size of the inclusion is less thantool for inverse algorithm in order to reconstruct optical
10 mm and the axial location of the inhomogeneity rangesnammographic images from two-dimensional projection
from 10 mm to 30 mm. Moreover, the relative error does nottechniques. Furthermore, a generalization of the developed
appreciably change as different axial locations of the inhoperturbation scheme to include the case of an arbitrary loca-
mogeneity are considered. It turns out that it increases fairlyion of the source and of the detector with respect to that of
regularly with increasing the size of the inclusion and thethe inhomogeneity might be conveniently used as inverse
degree of the relative absorption perturbation parameter. Thighear perturbation-based algorithm in optical tomography.
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